
Binary Trees, 
Binary Search Trees 



Trees 

• Linear access time of linked lists is prohibitive 

– Does there exist any simple data structure for 
which the running time of most operations 
(search, insert, delete) is O(log N)? 

 



Trees 

• A tree is a collection of nodes 

– The collection can be empty 

– (recursive definition) If not empty, a tree consists 
of a distinguished node r (the root), and zero or 
more nonempty subtrees T1, T2, ...., Tk, each of 
whose roots are connected by a directed edge 
from r 

 



Some Terminologies 

 

 

 

 
• Child and parent 

– Every node except the root has one parent  

– A node can have an arbitrary number of children 

• Leaves 
– Nodes with no children  

• Sibling 
– nodes with same parent 



Some Terminologies 

• Path 

• Length 
– number of edges on the path 

• Depth of a node 
– length of the unique path from the root to that node 

– The depth of a tree is equal to the depth of the deepest leaf 

• Height of a node 
– length of the longest path from that node to a leaf 

– all leaves are at height 0 

– The height of a tree is equal to the height of the root 

• Ancestor and descendant 
– Proper ancestor and proper descendant 



Binary Trees 
• A tree in which no node can have more than two children 

 

 

 

 
 

 

 

• The depth of an “average” binary tree is considerably smaller than N, 
eventhough in the worst case, the depth can be as large as N – 1. 



Example: Expression Trees 

 

 

 

 

 

 

 

 

 

 
• Leaves are operands (constants or variables) 

• The other nodes (internal nodes) contain operators 

• Will not be a binary tree if some operators are not binary 



Tree traversal 

• Used to print out the data in a tree in a certain 
order 

• Pre-order traversal 

– Print the data at the root 

– Recursively print out all data in the left subtree 

– Recursively print out all data in the right subtree 



Preorder, Postorder and Inorder 

• Preorder traversal 
– node, left, right 

– prefix expression 
• ++a*bc*+*defg 



Preorder, Postorder and Inorder 

• Postorder traversal 
– left, right, node 

– postfix expression 
• abc*+de*f+g*+ 

 

• Inorder traversal 
– left, node, right. 

– infix expression 
• a+b*c+d*e+f*g 



• Preorder 



• Postorder 



Preorder, Postorder and Inorder 



Binary Trees 

• Possible operations on the Binary Tree ADT 
– parent 

– left_child, right_child 

– sibling 

– root, etc 

• Implementation 
– Because a binary tree has at most two children, we can keep direct 

pointers to them 



compare: Implementation of a general tree 



Binary Search Trees 

• Stores keys in the nodes in a way so that searching, 
insertion and deletion can be done efficiently. 

Binary search tree property 
– For every node X, all the keys in its left subtree are smaller than 

the key value in X, and all the keys in its right subtree are larger 
than the key value in X 

 



Binary Search Trees 

  

 

 

 

 

 

 

 

A binary search tree Not a binary search tree 



Binary search trees 

 

 

 

 

 

 

 

 

• Average depth of a node is O(log N); 
maximum depth of a node is O(N) 

 

Two binary search trees representing  
the same set: 



Implementation 



Searching BST 

• If we are searching for 15, then we are done. 

• If we are searching for a key < 15, then we 
should search in the left subtree. 

• If we are searching for a key > 15, then we 
should search in the right subtree. 





Searching (Find) 

• Find X: return a pointer to the node that has key X, or NULL if 
there is no such node 

 

 

 

 

 

 

 

 

• Time complexity 
– O(height of the tree) 



Inorder traversal of BST 

• Print out all the keys in sorted order 

Inorder: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20 



findMin/ findMax 

• Return the node containing the smallest element in the tree 

• Start at the root and go left as long as there is a left child. The 
stopping point is the smallest element 

 

 

 

 

 

 

 

• Similarly for findMax 

• Time complexity = O(height of the tree) 



insert 
• Proceed down the tree as you would with a find 

• If X is found, do nothing (or update something) 

• Otherwise, insert X at the last spot on the path traversed 

 

 

 

 

 

 

 

 
 

• Time complexity = O(height of the tree) 



delete 

• When we delete a node, we need to consider 
how we take care of the children of the 
deleted node. 

– This has to be done such that the property of the 
search tree is maintained. 

 



delete 

Three cases: 

(1) the node is a leaf 
– Delete it immediately 

(2) the node has one child 
– Adjust a pointer from the parent to bypass that node 



delete 

(3) the node has 2 children 
– replace the key of that node with the minimum element at the 

right subtree  

– delete the minimum element  
• Has either no child or only right child because if it has a left child, that 

left child would be smaller and would have been chosen. So invoke 
case 1 or 2. 

 

 

 

 

 

 

 

 

 
• Time complexity = O(height of the tree) 


